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Abstract

We present the design, implementation and engineering ex-
perience in building and deploying MegaScale, a production
system for training large language models (LLMs) at the scale
of more than 10,000 GPUs. Training LLM:s at this scale brings
unprecedented challenges to training efficiency and stability.
We take a full-stack approach that co-designs the algorithmic
and system components across model block and optimizer
design, computation and communication overlapping, oper-
ator optimization, data pipeline, and network performance
tuning. Maintaining high efficiency throughout the training
process (i.e., stability) is an important consideration in pro-
duction given the long extent of LLM training jobs. Many
hard stability issues only emerge at large scale, and in-depth
observability is the key to address them. We develop a set
of diagnosis tools to monitor system components and events
deep in the stack, identify root causes, and derive effective
techniques to achieve fault tolerance and mitigate stragglers.
MegaScale achieves 55.2% Model FLOPs Utilization (MFU)
when training a 175B LLM model on 12,288 GPUs, improv-
ing the MFU by 1.34x compared to Megatron-LM. We share
our operational experience in identifying and fixing failures
and stragglers. We hope by articulating the problems and
sharing our experience from a systems perspective, this work
can inspire future LLM systems research.

1 Introduction

Large language models (LLMs) [1] have emerged as a trans-
formative technology in artificial intelligence (AI). Recent
advancements in LLMs have significantly improved their ca-
pability. LLMs have demonstrated tremendous potential in
a wide range of domains, such as machine translation, text
summarization, and conversational agents [2]. As a company

*Equal contribution.
"Corresponding authors.

serving billions of users, we have been aggressively integrat-
ing Al into our products, and we are putting LLMs as a high
priority to shape the future of our products.

Training LLMs is a daunting task that requires enormous
computation resources. The scaling law [3] dictates that the
model size and the training data size are critical factors that
determine the model capability. To achieve state-of-the-art
model capability, many efforts have been devoted to train
large models with hundreds of billions or even trillions of
parameters on hundreds of billions or even trillions of to-
kens. For example, GPT-3 [4] has 175 billion parameters and
PalLM [5] has 540 billion parameters. Major players in this
field build large-scale Al clusters with tens of thousands of
GPUs to train LLMs.

Scaling LLM training to tens of thousands of GPUs brings
unprecedented challenges. As Al has been at the core of many
of our products, we have extensive experience in training
deep neural networks (DNNs). Yet, training a model like
ResNet [6] only takes tens or hundreds of GPUs. Compared
to these models, the scale of training LLMs is unparallel.
While we are not new to building and operating large-scale
GPU clusters, these clusters are normally shared by many
training jobs. Now, in the context of LLM training, a single
job is occupying tens of thousands of GPUs and taking all the
resources. The sheer scale of LLM training introduces two
specific challenges from a systems perspective.

The first challenge is to achieve high training efficiency
at scale. Model FLOPs utilization (MFU) is the ratio of the
observed throughput to the theoretical maximum throughput
assuming 100% of peak FLOPs [7]. It is a standard metric
to evaluate training efficiency that directly translates to end-
to-end training speed. LLM training is not embarrassingly
parallel. To train an LLM, the model is split across GPUs
and the GPUs heavily communicate with each other to make
progress. Besides communication, other factors such as op-
erator optimization, data preprocessing and GPU memory
consumption also contribute significantly to MFU.

The second challenge is to achieve high training stability
at scale, i.e., maintaining high training efficiency throughout



the training process. Stability is particularly important from
a production perspective, as LLMs take a long time to train.
Training an LLM with one trillion tokens can take weeks.
The scale and time are orders of magnitude larger than those
of regular DNN training jobs. Failures and stragglers are the
norm rather than the exception for LLM training. At such a
scale, the consequences of failures and stragglers are devas-
tating. Failures are very expensive, and it is critical to reduce
the recovery time, given the large scale. A straggler not only
affects its own work, but slows down the entire job involving
tens of thousands of GPUs.

In this paper, we present the design, implementation and
engineering experience of MegaScale, a production system
for training LL.Ms at scale. MegaScale enables us to scale
LLM training to more than 10,000 GPUs. We are able to
harness the power of the massive number of GPUs to train
LLMs with high training efficiency and stability. In building
and operating MegaScale, we apply two systems principles:
algorithm-system co-design and in-depth observability.

MegaScale is a specialized system tailored for LLM train-
ing. Algorithm-system co-design is a key principle to max-
imize performance for specialized systems, which has been
applied widely in computer systems. We apply this principle
to MegaScale in the context of LLM training with a full-
stack approach that spans all important system components.
We make several modifications and incorporate effective op-
timization techniques to the model architecture, including
parallel transformer block [5], sliding window attention [8]
and LAMB optimizer [9]. We leverage mixed parallelism
strategies that combine data parallelism, pipeline parallelism,
tensor parallelism, and sequence parallelism. Importantly, we
design custom techniques based on the pattern of each par-
allelism strategy to maximize the overlapping between com-
munication and computation. We apply prefetching and tree-
based loading to optimize the data pipeline. We leverage
non-blocking asynchronous operations and eliminate global
barriers for large-scale collective communication group ini-
tialization. We design a custom network topology, reduce
ECMP hash conflicts, customize congestion control, and tune
retransmit timeout parameters for high network performance.

Stability problems including failures and stragglers in large-
scale systems are notoriously hard to diagnose and fix. Many
hard stability issues only emerge at large scale, which can
stem from a wide range of software and hardware faults deep
in the stack. Manually identifying and resolving every sin-
gle issue is infeasible given the scale and complexity of the
system. We apply the principle of in-depth observability to
build a set of diagnosis tools. By ’in-depth observability’, we
mean a comprehensive monitoring and visualization strategy
that penetrates beyond surface-level metrics to gather detailed,
granular data across every component of the system stack, aim-
ing to create a multidimensional view of system performance.
The set of tools allows us to diagnose the system and iden-
tify root causes, by uncovering the intricate interactions and
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Figure 1: Data parallel training with ZeRO2.

dependencies that contribute to stability issues. We develop
a robust training framework to automate fault localization
and recovery. We design heartbeat messages encapsulating
various forms of information to facilitate real-time anomaly
detection and provide early warnings. We implement a suite
of diagnostic tests to identify nodes causing disruptions. We
optimize the checkpointing and recovery procedure to reduce
interruptions. To troubleshoot nuanced cases caused by strag-
glers, we develop a performance analysis tool to record fine-
grained CUDA events and generate system-wide heat-map
and timeline trace from a distributed view, and develop a 3D
parallel training visualization tool to show data dependencies
between ranks for diagnosis.

MegaScale is deployed in our datacenters to train LLMs
for our products. Over the years, we have built several Al
clusters with different size and hardware configurations. Our
largest Al cluster has over 10,000 GPUs. In terms of training
efficiency, MegaScale achieves 55.2% MFU when training a
standard 175B transformer model on 12,288 GPUs, providing
an improvement of 1.34x compared to the state-of-the-art
open-source training framework Megatron-LM [10]. In terms
of model converge and stability, we show a real production run
of MegaScale that trains a proprietary model with hundreds
of billions of parameters on multi-trillion tokens for several
weeks. Over the weeks, the loss continues to converge, and
MegaScale repairs and recovers the training process for over
100 times in presence of failures. We also share our experience
in diagnosing and fixing some intriguing problems. We are
working on open-sourcing components that can benefit the
community on GitHub".

2 Background

The training of LLMs, characterized by their vast model ar-
chitectures and massive datasets, is computationally intensive.
Parallelism strategies distribute the training process across
multiple devices.

Data parallelism. It replicates the model and optimizer states
across multiple devices and the data is evenly divided among
all devices. Each model replica executes the forward and
backward propagation computation in parallel. Upon com-
pletion of each iteration, all model replicas synchronize to

3https://github.com/volcengine/veScale
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Figure 2: Interleaved 1F1B pipeline.

update the model. Instead of duplicating model states (like
the optimizer states, gradients, and parameters), Zero Redun-
dancy Optimizer (ZeRO) [11] shards these states across every
data-parallel process. As a result, the traditional all-reduce
operations that aggregate gradients are decomposed into sep-
arate reduce-scatter and all-gather operations. This is because
every data-parallel process retains only a fraction of the total
state. ZeRO is structured into three incremental stages of op-
timizations. Notably, the second stage is commonly adopted
to shard both the optimizer states and gradients, while en-
suring no additional communication overhead is introduced
(Figure 1).

Pipeline parallelism. It distributes model layers among mul-
tiple devices and each device owns a portion of the model.
Meanwhile, each training batch is subdivided into a number of
micro-batches for pipelined execution. To reduce pipeline bub-
bles, various pipeline scheduling strategies are proposed, e.g.,
GPipe [12], PipeDream 1F1B [13], etc. Megatron-LM [7] em-
ploys the interleaved 1F1B scheduling. Each pipeline stage
on every worker is subdivided into multiple virtual stages,
which represents a subset of layers, referred to as a model
chunk. Initially, workers enter a warm-up phase, executing the
forward pass for a limited number of in-flight micro-batches.
Following the warm-up, each worker progresses to the steady
phase where workers perform one forward pass followed by
one backward pass, often abbreviated as 1F1B. Upon con-
cluding a batch, workers finalize the backward passes for
any remaining in-flight micro-batches during this cool-down
phase. Figure 2 shows an three-stage pipeline where each
stage is further divided into two virtual stages.

Tensor parallelism. It distributes individual operators over
multiple devices, with each device executing a portion of the
computation in parallel. Depending on the specific partition-
ing strategy and its relationship to prior and subsequent oper-
ators in the model, partitioning can require communication
among participating GPUs to split the input and then merge
the output. For example, we can split GEMMs in the MLP and
self-attention blocks among multiple GPUs to utilize more
computational units. Some other operations like LayerNorm
and Dropout are less computationally intensive but demand
a considerable amount of activation memory. Another form
of tensor parallelism called sequence parallelism is proposed
to distribute these operators along the sequence dimension to
effectively reduce the activation memory footprint.

Combination of parallelism strategies. These parallelism
strategies can be combined into 3D parallelism to scale the
training of LLMs across many GPUs [10]. Given the high
communication overhead associated with tensor parallelism,
it is preferable to confine such communication within a sin-
gle cluster node. Conversely, data parallelism and pipeline
parallelism are more amenable to inter-node communication.
In this case, we choose to prioritize building the data paral-
lelism groups over pipeline parallelism, which can mitigate
cross-minipod communication for data parallelism.

3 Efficient Training at Scale

In the realm of LLMs, efficient training at scale becomes
paramount. As we venture into deeper and more expansive
models, the computational demands surge explosively. Han-
dling such computation requirements without compromising
on model accuracy necessitates the adoption of state-of-the-
art algorithmic optimizations, communication strategies, data
pipeline management, and network performance tuning tech-
niques. This section delves deep into the methods employed
to optimize the training of large models in order to achieve
high training efficiency at scale.

3.1 Algorithmic Optimizations

We make a few modifications and incorporate recent optimiza-
tions at the algorithmic level to improve training efficiency,
without compromising accuracy. We validate the impact of
these techniques on model convergence in §6.2.

Parallel transformer block [14]. We adopt a parallel version
of the transformer block in lieu of the standard serialized for-
mulation. Specifically, the standard formula of the transformer
block can be reformatted from

y = x+MLP(LN(x + Attention(LN(x)))) (M

into
y =x+MLP(LN(x)) + Attention(LN(x)) 2)

With this approach, the computation of the attention block
and the MLP block can be executed in parallel, thereby re-
ducing the computation time. Prior work [5] shows that this
modification does not degrade the quality of models with
parameters in the hundreds of billions.

Sliding window attention (SWA). Sliding window atten-
tion [8] is a sparse attention mechanism that employs a fixed-
size window surrounding each token in the input sequence.
The computation complexity is O(s x w), where s is the in-
put sequence length and w is the fixed window size. Sliding
window attention is more efficient than the full self-attention,
whose computation complexity is O(s X s), given that w < s.
Past work [8] and our micro-benchmark (§6.2) have shown
that the information across the entire input can be retained
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Figure 3: Overlapping communication in tensor parallelism (TP) and sequence parallelism (SP) with parallel transformer block (PTB).

with a large receptive field created by stacking layers of such
windowed attention. This enables faster training without com-
promising the accuracy.

LAMB optimizer. Efficient training at a large scale is often
hindered by batch size constraints. Particularly, increasing
the batch size may adversely affect model convergence. The
LAMB optimizer [9] has been demonstrated to enable the
scaling of BERT’s training batch size to 64K without com-
promising accuracy. In the LLM setting, our experiments find
that LAMB can scale the batch size to 4 x without accuracy
loss. With intgrleaved pipeline parallelism, the original sched-
—

ule contains ] 71 pipeline bubbles when training four steps

with 1x batch size [7], while the pipeline bubbles of training
one step with 4x batch size are %’2—:”1. Hence, MegaScale

reduces 87.5% of the pipeline bubbles via LAMB optimizer.

3.2 Communication Overlapping in 3D Paral-
lelism

To reduce the iteration time, we systematically analyze the
dependencies between computation and communication for
all the operators in 3D parallelism, and design techniques to
hide the overhead of all the off-the-critical-path operations.

Overlapping in data parallelism. As shown in Figure 1, for
data parallelism, two main communication operations stand
out. One is the all-gather operation, which fetches the most
recent model parameters from workers in other data parallel
ranks during the forward pass. The other is the reduce-scatter
operation, which collect the gradients in the backward pass.

In 3D parallelism, a single device may host multiple model
chunks. Overlapping is implemented on a model chunk basis
to maximize bandwidth utilization. The all-gather operation
is triggered prior to the forward pass of a model chunk, and
the reduce-scatter operation commences after its backward
pass. This results in a challenge where the first all-gather op-
eration and the last reduce-scatter operation cannot be hidden.
Inspired by PyTorch FSDP [15], the initial all-gather opera-
tion is pre-fetched at the beginning of each iteration, allowing
it to overlap with data loading operations, effectively reducing
the communication time by a factor of 1/(2xvpp_size). We
also launch the high priority communication first to maximize
overlapping. The priorities of communication operators are
determined by the order of the corresponding computation
operators that depend on the communication result.

Overlapping in pipeline parallelism. Pipeline parallelism
features point-to-point send/receive communication. MegaS-
cale uses the interleaved 1F1B scheduling method mentioned
in 2. We note that in the warm-up phase, the forward pass only
depends on its previous receive. We thus decouple the send
and receive, which are often implemented together and can
be blocked by the slower one. By breaking this dependency,
we enable the send operation to overlap with the computation
as shown in the left part of Figure 4. The cool-down phase
can be viewed as the inverse of the warm-up phase, allowing
for the inverse application of the same technique. As for the
steady phase, both the forward and backward computation are
independent of adjacent communication operations. Taking
the backward as an example, as shown in the right part of
Figure 4, its previous receive is for the next forward compu-
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Figure 4: Overlapping communication in pipeline parallelism.

tation while the send is for the backward computation in the
previous stage. So the send and receive operations can be
launched asynchronously to overlap with the computation.

Overlapping in tensor/sequence parallelism. Tensor
parallelism is commonly used to partition weights in
computational-intensive operations, while operations like Lay-
erNorm and Dropout are partitioned along the sequence di-
mension to save GPU memory. This necessitates all-gather
and reduce-scatter operations for input collection and output
redistribution across GPUs. Figure 3a shows this communi-
cation pattern in the parallel transformer block architecture.
Here the two communication operators are in the critical
path. To eliminate this overhead, we choose to fuse all-gather
and reduce-scatter with the parallel Linears on the FFN path
(Figure 3b). Since the GEMM kernels on the FFN path is
larger, the communication can be hidden better. We break the
GEMM kernel into small chunks, and pipeline the execution
with the communication (Figure 3c). This strategy can be
applied in the backward pass similarly.

3.3 Efficient Operators

Despite the optimization for GEMM operators in Megatron-
LM, we identify opportunities for further enhancement
in other operators. For the attention part, we adopt
FlashAttention-2 [16], which improves work partitioning be-
tween different thread blocks and warps. For LayerNorm and
GeLU, we observe that they are composed of fine-grained
kernels in previous implementations. By fusing these kernels
together, we reduce the overhead associated with launching
multiple kernels and aid in optimizing memory access pat-
terns, thereby achieving better performance.

3.4 Data Pipeline

Data preprocessing and loading are often overlooked. How-
ever, these operations create non-negligible GPU idle time at
the beginning of each training step. Optimizing these opera-
tions are essential for efficiency of the training process.

Asynchronous data preprocessing. Data preprocessing is
not on the critical path. As a result, while the GPU workers
are synchronizing gradients at the end of each training step,
the data preprocessing for the subsequent step can start, which
hides the preprocessing overhead.

Redundant dataloader elimination. In a typical data loading
phase of distributed training, each GPU worker is equipped
with its own data loader, responsible for reading training data
into the CPU memory before forwarding it to the GPU. This
leads to competition among workers for disk read bandwidth,
thereby creating a bottleneck. Notably, we observe that in the
LLM training setting, GPU workers within the same machine
are in the same tensor parallel group. Consequently, their
inputs for each iteration are inherently identical. Based on
this observation, we adopt a two-layer tree-based approach.
We use a single, dedicated data loader on each machine to read
the training data into a piece of shared memory. Subsequently,
each GPU worker is responsible for copying the necessary
data to its own GPU memory. This eliminates redundant reads
and significantly enhances the efficiency of data transfer.

3.5 Collective Communication Group Initial-
ization

In distributed training, the initialization phase involves the
establishment of NVIDIA Collective Communications Li-
brary (NCCL) communication groups among GPU workers.
Since this overhead is relatively negligible in small-scale
scenarios, torch.distributed is used by default. As the
number of GPUs scales to over ten thousand, the overhead
introduced by naive implementations becomes intolerable.
We conduct experiments on the same Al cluster in §6 and our
empirical measurement indicates that the initialization time
for Megatron-LM on 2,048 NVIDIA Ampere GPUs is approx-
imately 1047 seconds. While this may appear relatively small
compared to the training duration, it imposes a significant hur-
dle to routine testing and iterative development (e.g., minor
code adjustments in hyperparameter tuning and debugging). It
also hampers the implementation of fast restart-and-recovery
mechanisms.

To address this issue, we perform a detailed profiling of
torch.distributed[17] and identify two primary causes of
excessive initialization time. The first issue resides in the syn-
chronization step, where each process is involved in a barrier
operation at the end of initialization a specific communication
group. This barrier uses TCPStore, an inner distributed Key-
Value Store implementation in Pytorch which operates in a
single-threaded, blocking read-write manner. We replace TCP-
Store with Redis, which is non-blocking and asynchronous.
This reduces the initialization time to 361 seconds on 2,048
GPUs. The second issue is related to the incautious usage of
global barriers. Each process executes a global barrier after
initializing its corresponding communication group. We care-



fully design the order in which communication groups are
initialized to minimize the need for global barriers. This ap-
proach lowers the time complexity of the global barrier from
O(n?) to O(n). The initialization time is reduced to under 5
seconds on 2048 GPUs, and to under 30 seconds on more
than 10,000 GPUs with those optimizations.

3.6 Network Performance Tuning

We analyze the traffic across machines in 3D parallelism and
design techniques to improve network performance.

Network topology. Our datacenter network is built with high-
performance switches based on Broadcom Tomahawk 4 chips.
The total bandwidth of each Tomahawk chip is 25.6Tbps with
64 x400Gbps ports. Three layers of switches are connected
in a CLOS-like topology to connect more than 10,000 GPUs.
For switches at each layer, the bandwidth percentage between
downlink and uplink is 1:1. That is, 32 ports are used as down-
link and 32 ports are used as uplink. The network provides
high bandwidth with a small diameter. Every node can com-
municate with other nodes within a limited number of hops.

Reducing ECMP hashing conflicts. We carefully design
the network topology and schedule network traffic to reduce
ECMP hashing conflicts. First, at the top-of-rack (ToR) switch
level, one 400G downlink port is split into two 200G down-
link ports with specific AOC cables. The conflict probability
is reduced as the bandwidth of each uplink is double of that
of a downlink. Second, eight 200G NICs on the server is
connected to eight different switches in a multi-rail way. The
number of GPU servers connected by the same sets of ToR
switches can reach 64. And we strategically schedule the data-
intensive nodes from our training tasks to operate under the
same Top of Rack (ToR) switch. This approach significantly
reduces the number of switch hops required for communica-
tion and further reduce ECMP hashing conflicts probability.

Congestion control. In distributed training, all-to-all commu-
nication may lead to congestion and elevated levels of Priority
Flow Control (PFC) [18] when employing the default DC-
QCN [19] protocol at scale. Excessive use of PFC can result
in head-of-line (HoL) blocking [19], thereby diminishing net-
work throughput. To mitigate these issues, we have developed
an algorithm incorporating principles from both Swift [20]
and DCQCN, which integrates the precise measurement of
Round-Trip Time (RTT) with the rapid congestion response
capabilities of Explicit Congestion Notification (ECN). This
approach significantly enhances throughput and minimizes
congestion related to PFC.

Retransmit timeout setting. Parameters in NCCL can be
set to control retransmit timer and retry count. We tune these
parameters for fast recovery under link flapping. To further
reduce the recover time, we enable the adap_retrans feature
on the NIC. This feature enables retransmission in a shorter
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Figure 5: Robust training workflow.

interval and help recover the transmission more quickly when
the link flapping period is short.

4 Fault Tolerance

As the training cluster scales to over tens of thousands of
GPUs, software and hardware faults become virtually in-
evitable. We introduce a robust training framework for LLM
training that achieves automatic fault identification and fast
recovery, enabling fault tolerance with minimal human inter-
vention and negligible impact on ongoing training tasks.

4.1 Robust Training Workflow

As Figure 5 shows, upon receiving a submitted training task,
the driver process interfaces with a custom Kubernetes to
allocate computing resources and initiate the corresponding
Pod for each executor. One executor manage one node. Once
the executor has completed a series of initialization tasks, it
creates the training process on each GPU and a robust train-
ing daemon which sends heartbeat to the driver periodically.
These heartbeats encapsulate various forms of information to
enable real-time anomaly detection and issue early warnings
(§4.2). When the driver process detects an abnormal status
in a particular training process, or fails to receive a heartbeat
from an executor within a predefined time window, it trig-
gers the fault recovery procedure. The driver will suspend
the ongoing training task across all executors and command
them to run a series of self-check diagnostics (§4.3). These
diagnostic tests are carefully designed to be lightweight yet
comprehensive, covering the majority of common hardware
and software faults. Once the problematic nodes are identified,
the driver submits the IP addresses of the nodes to be blocked,
along with the information of the Pods running on them, to
Kubernetes, which evicts the faulty nodes and replenishes the
cluster with an equivalent amount of healthy ones which pass
our diagnostic tests. Additionally, we provide a user interface
that allows for manual eviction of nodes, particularly for those
identified through manual analysis as in §5. After the recov-
ery process is complete, the driver resumes training from the
latest checkpoint. We optimize the checkpoint and resume
process to minimize the loss of training progress (§4.4).



4.2 Data Collection and Analysis

The heartbeat messages includes the basic information of
the executor, such as the IP address, the Pod name, and hard-
ware information, etc. Additionally, the current status of the
training processes is reported, enabling the driver to promptly
detect any explicit anomalies. The stdout/stderr logs of train-
ing processes are also included. They will be aggregated,
filtered and analyzed on the fly. If specific warning or error
keywords are detected, the driver will report real-time diag-
nostic information. Moreover, RDMA traffic metrics are also
included, serving as an indicator for network utilization and
efficiency. Some anomalies in the training process may not
manifest as explicit errors, giving the appearance that training
is proceeding as expected. In such cases, RDMA traffic met-
rics serve as a critical indicator. Given the periodic nature of
the training tasks, the network traffic characteristics for each
step should exhibit similar patterns. Therefore, any significant
decline or abnormal fluctuation in RDMA traffic is a signal
of potential anomalies. Upon detecting such irregularities, the
driver will issue alerts for manual investigation. If the traffic
ceases entirely, the driver will automatically initiate the fault
recovery procedure.

In order to enhance the monitoring of training stability and
performance, we have developed a monitoring system with
precision reaching the millisecond level. Different levels of
monitoring are employed to track various indicators. Second-
level monitoring is typically used to assess the overall health
status and to rule out common configuration impacts on train-
ing. For instance, ECN/PFC/QoS configurations, link flapping,
or any other issues of NICs. Millisecond-level monitoring,
on the other hand, is used to determine if the network is con-
gested and whether the data transfer speed of data parallelism
and pipe parallelism has reached its physical limit.

4.3 Diagnostic Tests

There exists a trade-off between execution time and accuracy
in self-check diagnostics. Extended diagnostic duration can
adversely affect the effective training time, while high false
positive rates can lead to unnecessary exclusion of machines
that are actually functional. Through iterative experimentation
and optimization, we have deployed a suite of lightweight di-
agnostic tests that effectively cover a broad spectrum of hard-
ware and software faults encountered during actual training
processes.

Intra-host network tests. To diagnose potential bottlenecks
in intra-host network, we use our internally developed tool
to test two things. The Loopback test measures the loop-
back bandwidth from all RDMA NICs (RNICs) to various
intra-host endpoints, including memory nodes and GPUs. It
conducts a full-mesh test within the host, covering all possible
link combinations. This allows us to infer link-specific band-
width degradation and irregularities in PCle configurations

based on end-to-end bandwidth results. The second RNIC-
to-RNIC test examines the connectivity and bandwidth per-
formance between different RNICs on the same host. These
tests provide insights into whether the RNICs meet the hard-
ware speed specifications and whether the underlying routing
configurations are correctly configured.

NCCL tests. To identify potential faults in GPU communica-
tion, we run an all-tfo-all test among the GPUs within a single
node to observe whether the bandwidth aligns with expected
benchmarks. Once intra-host communication test is passed,
each node also conducts an all-reduce test with neighboring
machines under the same ToR switch to assess inter-node
GPU communication.

4.4 Fast Checkpointing and Recovery

After identifying and evicting faulty machines, the driver
needs to resume the training by loading model weights and
optimizer states from the most recent checkpoint. It is critical
to ensure that the latest checkpoint is as close as possible
to the state of training progress when the faults happened,
to minimize loss in computation and time. This require us
to increase the frequency of checkpointing during training.
However, we also want to reduce the latency introduced by
the checkpointing process, especially the time on the critical
path which blocks the training progress, thus impeding the
overall system throughput.

To achieve fast checkpointing, we introduce an optimized,
two-stage approach. In the first stage, each GPU worker writes
its on-chip states to the host memory, and then continues the
training process. After the optimization of Pytorch’s serializa-
tion mechanism and the use of pinned memory, this process
can be reduced to several seconds thanks to the high PCle
bandwidth, thereby minimally interrupting the ongoing train-
ing process. In the second stage, a background process takes
over, asynchronously transferring the state from the host mem-
ory to a distributed file system (HDFS in our deployment)
for centralized maintenance. This decoupling of operations
into two stages allows the GPU workers to resume training
almost immediately after dumping their state, while the more
time-consuming process of writing to HDFS is offloaded to a
separate, non-blocking process.

In the context of recovery from a checkpoint, it is on the
critical path since training can not be started without the last
checkpoint. The bottleneck is the bandwidth of HDFS, espe-
cially when each GPU worker needs to read its corresponding
state partition. To alleviate this bottleneck, we propose an
optimized data retrieval strategy. We recognize that multiple
GPU workers often share the same state partition, e.g., the
workers in the same data parallel group. Accordingly, we des-
ignate a single worker in the group to read the shared state
partition from HDFS, thereby reducing the load linearly. This
worker then broadcasts the state partition to all other GPU
workers that share the same data. This approach effectively
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Figure 6: Inconsistent MFU observed in large-scale training. Differ-
ent colors denote distinct executions of the same training job.

mitigates the bandwidth constraints of HDFS, leading to a
substantial reduction in the recovery time.

5 Training Troubleshooting

Although our robust training framework automatically discov-
ers, pinpoints, and resolves the majority of common faults,
there remain certain hardware anomalies that manifest proba-
bilistically and cannot be found by machine self-checks. Some
anomalies may make the system appear to operate normally,
yet significantly degrades the training efficiency. To address
these nuanced cases, we have implemented several custom
monitoring and analysis tools designed to support case-by-
case anomaly detection.

5.1 Performance Diagnosis with CUDA Event
Monitor

At the scale of tens of thousands of GPUs, we observe that,
unlike in smaller-scale experiments, different runs exhibit
varying computational efficiencies. Even with identical con-
figurations , this inconsistency persist, as shown in Figure 6.
We also observed that the performance of training tasks is not
consistent at this scale. The MFU for various training tasks
gradually declines over time. While this leads us to suspect
variations between individual machines, no evident variations
are detected under single GPU GEMM micro-benchmarks.
To diagnose those performance issues, we develop a perfor-
mance analysis tool that records the execution time of critical
code segments on each machine rank during a run. In contrast
to previous tools such as the torch profiler or the Megatron-
LM timer, our tool times events based on the CUDA events
method. This approach minimizes the need for CUDA syn-
chronization, thus preventing performance degradation, allow-
ing us to consistently run it in our production training jobs.
This tool offers two visualization modes and can analyze the
collected data from different perspectives.

The first mode uses a heat map to show time consumption
differences between machines from various dimensions, de-
picted in Figure 7. We gather latency data of the computation
phase (forward and backward) across devices and average
the latency across steps. The aggregated data is visualized
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Figure 7: Performance heat-map. The color denotes the running
time of the code segments on a rank. The figure also shows the
3D visualization feature, where rank 20 has been selected and the
dependency across different parallelism dimensions become visible.

using a heat-map. The heat-map reveals that a minor frac-
tion of machines (approximately 0.5%) exhibit substantially
slower performance during training, thereby hindering overall
training progress. The training efficiency is predominantly
determined by the slowest machine’s performance (i.e., strag-
glers), leading to inconsistencies in training efficiency across
diverse runs, since machine scheduling within the cluster is
stochastic. After excluding these outlier machines, the peak
MFU across runs becomes consistent.

The other mode displays the event timeline on machines
in a trace format from different distributed views (data paral-
lelism, pipeline parallelism, tensor parallelism). Traditional
profiler, such as PyTorch Profiler, is primarily designed for
single-node activity analysis. This approach offers limited
insight in distributed training scenarios where execution de-
pendencies frequently span across multiple nodes. By ag-
gregating the trace spans of various ranks onto a singular
timeline, we gain a comprehensive perspective, revealing the
overall execution order, pipeline bubbles, and synchronization
characteristics among data parallel ranks. Figure 8 displays
how our distributed tracer visualizes the actual execution of
pipeline parallelism, detailing the data dependencies between
different pipeline stages through the consolidation of event
data across a pipeline parallelism group.

Every piece of data from the CUDA event timer is stored
in a remote analytical database, allowing for easy retrieval of
details from any step event. While the timer data is wrote to a
local file in a line-by-line format, a separate streamer process
then synchronizes this log file with a Kafka queue in real-time.
The analytical database remains updated by consuming data
from this Kafka queue, enabling on-the-fly analysis without
interrupting the training job. All the monitoring features are
turned on during real production training and the overhead is
negligible compared to the training time.
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Figure 8: The trace shows events collected in a pipeline group on a unified timeline. Dependencies become visible when an event is selected.

5.2 3D Parallel Training Visualization

With 3D parallelism and our optimization techniques (§3),
the landscape of data flow and task sequencing is exceedingly
intricate. Each GPU worker may be engaged in several syn-
chronous or asynchronous operations at the given moment,
leading to complex dependencies among them. This intricacy
amplifies the challenges of fault diagnosis: when a single
GPU worker experiences a fault, the entire cluster of nodes
can stall in the NCCL communication operations, ultimately
leading to a system-wide timeout. Externally, this situation
manifests as a generic blockage, but the root cause of which is
often buried under a deluge of timeout messages. To rapidly
pinpoint the problematic nodes, we let each GPU worker log
its own ongoing event upon communication timeout. These
logs are then used to construct a visual representation of data
dependencies based on the logical topology in the 3D parallel
setting.

As Figure 7 shows, the cluster in 3D parallel training can
logically be split into three dimensions: tensor parallelism,
pipeline parallelism, and data parallelism. When we select a
specific GPU worker, it displays its position within the logical
topology, the direction of data flow and the different commu-
nication operations it involves. Importantly, in the event of
an error, the tool provides direct access to the worker’s error
messages if any. This serves as a powerful tool for diagnos-
ing training anomalies, enabling quicker identification and
resolution of faults.

Consider the aforementioned case when defective GPUs
probabilistically cause blocking when executing NCCL com-
munication operations. Such blocking can hang the entire
machine, leading to cascading timeouts across other depen-
dent nodes and ultimately resulting in the paralysis of the
entire training process. To swiftly identify these faulty nodes,
we utilize the 3D parallel training visualization tool. Nodes
that timeout due to waiting for the faulty ones will log their
ongoing operations upon exiting. In contrast, the nodes with
the faulty GPUs are hung and do not log any such infor-
mation. Therefore, by examining the logs and the data flow
within the visualization, these problematic nodes can be easily
pinpointed. Once identified, these nodes can be manually iso-
lated and flagged for maintenance through the robust training
framework, as described in 4.1.

Mgdel Heads quden Layers | TP | PP
Size Size

175B 128 12288 96 8 8
530B 160 20480 105 8 | 35

Table 1: Model configurations.

6 Experience

In this section, we describe our deployment and operational
experience of MegaScale. We build dedicated Al clusters for
LLM training. Over the years, we have iterated several ver-
sions of our specialized Al cluster architecture, and we are
currently operating several Al clusters with varying size and
hardware configurations. We use these Al clusters to train a
wide range of models, from computer vision and recommen-
dation models to LLMs. With the increasing importance of
LLMs, we are building Al clusters with larger size to cater the
need of LLM training. As of September 2023, the largest Al
cluster in our production for LLM training contains more than
10,000 NVIDIA Ampere GPUs. We are also in the process of
building large clusters based on the newest NVIDIA Hopper
GPUs, as NVIDIA is ramping up production.

6.1 Training Performance

MegaScale is built on top of Megatron-LM [7], which is a
state-of-the-art open-source LLM training framework that
integrates 3D parallelism techniques and takes advantage of
hardware resources. Our experiments use the Megatron-LM
(commit hash: 285068c8) on Github [21], chosen for its stabil-
ity and feature set at the commencement of our experiments
months ago. We use the same batch size for Megatron-LM
and MegaScale for fair comparison. We use two model sizes:
175B parameters and 530B parameters. We use interleaved
pipeline-parallel schedule [22] with six and three interleaving
stages for the 175B and 530B models, respectively. Sequence
length is 2,048 and vocabulary size is 64,000 for all the cases.
Table | shows the details of the model configuration.

Scalability. Figure 9 compares Megatron-LM and MegaScale
when training the 530B model, where we set the batch size as
the number of GPUs with adjusted learning rate to show the
MFU results. We see that the MFU of MegaScale is higher
than Megatron-LM by up to 6.1%. With increasing scales, the



Batch Size Method GPUs | Iteration Time (s) rl;?gigilslz;lt Tral?ézis";"lme MFU AP%:glroepiize

256 40.0 39.3k 88.35 53.0% 433

Megatron-LM 512 21.2 74.1k 46.86 49.9% 77.6

768 15.2 103.8k 33.45 46.7% 111.9

768 1024 11.9 132.7k 26.17 44.7% 131.9
256 32.0 49.0k 70.86 65.3%(1.23%) 52.2

MegaScale 512 16.5 95.1k 36.51 63.5%(1.27 %) 101.4

768 11.5 136.7k 25.40 61.3%(1.31x) 146.9

1024 8.9 176.9k 19.62 59.0%(1.32x) 188.5

3072 29.02 433.6k 8.01 48.7% 466.8

Megatron-LM 6144 14.78 851.6k 4.08 47.8% 916.3

8192 12.24 1027.9k 3.38 43.3% 1106.7

6144 12288 8.57 1466.8k 2.37 41.2% 1579.5
3072 23.66 531.9k 6.53 59.1%(1.21x) 566.5

MegaScale 6144 12.21 1030.9k 3.37 57.3%(1.19%) 1098.4

8192 9.56 1315.6k 2.64 54.9%(1.26 x) 1400.6

12288 6.34 1984.0k 1.75 55.2%(1.34x) 2166.3

Table 2: Strong-scaling training performance for the 175B model. We set the batch size to 6144 when training with 3072 to 12288 GPUs. For
256 to 1024 GPUs, we decrease the batch size to 768 due to GPU memory limit. We report the training time required for training 300B tokens
here. The number in parentheses in the MFU column represents the speedup of MegaScale compared to Megatron-LM.

Megatron-LM MegaScale
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Figure 9: Weak-scaling training performance of Megatron-LM and
MegaScale on the 530B model, where the batch size is scaled pro-
portionally with the number of GPUs.

MFU of Megatron-LM decreases by 1.6% with more strag-
glers and communication, while MegaScale has near-linear
scalability due to 3D-parallel communication overlapping.

In Table 2, we evaluate the strong-scaling training perfor-
mance of Megatron-LM and MegaScale on the 175B model by
increasing number of GPUs and maintaining a constant batch
size. This experimental setting is more realistic, given that
batch size is constrained by convergence effects and cannot
be indefinitely scaled with the number of GPUs. MegaScale
achieves up to 1.34x speedups over Megatron-LM across
all settings. With increasing GPUs, we observe the MFU
of MegaScale decreases from 59.1% to 55.2%. This is ex-
pected since the batch size is fixed and the computation-to-
communication ratio decreases with more GPUs. Even in the
largest scale with 12,288 GPUs, MegaScale still outperforms
Megatron-LM by 14% MFU. For the smaller scale training,
the speedup of MegaScale over the baseline ranges from
1.23x to 1.32x. Note that the difference in the maximum
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number of GPUs between this and the previous experiments
(e.g., 12,288 vs. 11,200) is due to distinct 3D parallelism
configurations for 175B and 530B models.

Ablation study. We evaluate the effectiveness of our opti-
mization techniques of MegaScale. Table 3 shows the MFU
improvement breakdown with different optimizations when
training the 175B model on 256 GPUs. The baseline is the
original Megatron-LM and has 47.7% MFU. It is worth not-
ing that the networking optimizations are turned on for both
Megatron-LM and MegaScale in this evaluation. We first ap-
ply two algorithmic techniques, parallel transformer block
and sliding window attention, to Megatron-LM, achieving
5.6% MFU improvement. Communication is the major bot-
tleneck of large-scale LLM training, and the 3D parallel com-
munication overlapping of MegaScale hides the overhead and
accelerates training by 6.2% MFU. We further adopt efficient
operators and obtain 1.7% acceleration. Other optimizations
such as data pipeline optimizations and the problematic code
elimination mentioned in 6.3 further achieves 1.1% perfor-
mance gain. Finally, we scale the batch size from 256 to 768
with LAMB optimizer, which significantly extends the steady
phase in interleaved pipeline parallelism and achieves 3.0%
MFU improvement. To sum up, MegaScale outperforms the
baseline by 17.6% in the MFU number with all these opti-
mizations.

6.2 Model Convergence and Stability

Model convergence microbenchmarks. We first conduct
microbenchmark experiments to validate the algorithm tech-
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(a) The training loss curve of MegaScale, which includes algorithm opti-
mizations, in comparison with Megatron-LM.

—— 1x batch_size ADAM
4x batch_size LAMB

100 150 200
consumed tokens (B)

0 50 250

(b) The training loss curve of ADAM optimizer and LAMB optimizer with
four times of the batch size.

Figure 10: The training loss curves in microbenchmark experiments.
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Figure 11: The normalized training loss curve of a real production run on more than 10,000 GPUs for several weeks. This run trains a model
with hundreds of billions of parameters on multi-trillion tokens. Different colors indicate training restarts. MegaScale repairs and recovers the

training process for over 100 times in presence of failures.

Idx Method MFU (A MFU)
1 baseline 47.7%
2 (1) with PTB 52.3% (4.6%)
3 (2) with SWA 53.3% (5.6%)
4 (3) with TP overlap 55.5% (7.8%)
5 (4) with PP overlap 58.0% (10.3%)
6 (5) with DP overlap 59.5% (11.8%)
7 (6) with efficient operators | 61.2% (13.5%)
8 (7) with misc optimizations | 62.3% (14.6%)
9 (8) with LAMB (BS x3) 65.3% (17.6%)

Table 3: MFU improvement breakdown when training the 175B
model with 256 GPUs and batch size 256.

niques do not affect the model convergence. Due to the re-
source limit, the microbenchmarks are done on the 13B model.
As shown in Figure 10a, while MegaScale adopts algorithm
techniques, including parallel transformer block and sliding
window attention, it achieves comparable loss results with the
baseline when training with more than 100B tokens. We also
evaluate the effect of LAMB optimizer as depicted in Fig-
ure 10b, which shows that LAMB optimizer with four times
of batch size achieves the same loss as ADAM optimizer after
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around 250B tokens. Based on these observations, we turn on
all the algorithmic optimizations in production training.

Model convergence and stability in real production LLM
training. We show the model convergence and stability from
areal production run. This run trains a proprietary model with
hundreds of billions of parameters on multi-trillion tokens.
This run uses more than 10,000 GPUs and lasts for several
weeks. Figure 11 shows the loss continues to converge, with
distinct colors indicating the training is restarted. Over the
several weeks of this run, we experience training restarts over
100 times. With the robust training framework, over 90%
of software and hardware faults are automatically identified
and fixed by the techniques detailed in §4. The rest of the
problems are handled with the help of the troubleshooting
tools described in §5.

6.3 Problems Discovered and Fixed

We conduct an analysis of the fault records for the afore-
mentioned production training job over several weeks. Our
findings indicate that over 90% of the exceptions among them
are automatically detected, located, and recovered using our
robust training framework, such as CUDA error and segmenta-
tion fault. The average time required for detecting failure and
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Figure 12: The MFU becomes stable after addressing the stragglers
and problematic code segments. Different colors represent different
training trials with the same setup.

executing diagnostic tests is less than 10 minutes. Moreover,
the system can catch up to the training progress prior to the
crash within 15 minutes from the latest checkpoints, maintain-
ing over 90% effective training time rate, which is calculated
as the number of iterations multiplied by the iteration training
time, divided by the total training time. Below we show our
experience in diagnosing and fixing some intriguing prob-
lems, which need to be analyzed using the troubleshooting
tools in §5.

Computational stragglers. Building upon our utilization of
CUDA event timers, we made another pertinent observation
across multiple experimental setups. We noted that specific
hosts took approximately 10% more time to execute the same
forward computations compared to other ranks. This consis-
tency across different experiments led us to conclude that the
issue was not with the software but rather inherent to certain
machines in the cluster. After isolating and removing these
problematic hosts from the cluster, we observed an approxi-
mate 0.7% improvement in MFU.

MFU decreasing. In such large-scale training experiments,
another phenomenon we observed is that training efficiency
did not remain consistent over time. Instead, as the training
progressed, the MFU of our training job gradually decreased.
Through a step-by-step analysis based on CUDA event timer
metrics, we noted several key findings. While the time con-
sumed per training step was increasing, the time spent on
forward, backward, and optimizer computations remained sta-
ble, irrespective of the increasing number of steps. This led us
to infer that the time increase must be attributed to the collec-
tive communication overhead. Upon a reverse chronological
examination, we identified the last collective communication
step as the gradient reduce-scatter in data parallelism. If this
step is delayed, the overall time per step elongates. Since we
observed network bandwidth to be largely stable, we ruled out
slowed communication speed as a factor for the increased time.
According to the synchronization characteristics of collective
communication, this leaves us with one conclusion: some
ranks initiate the reduce-scatter operation later than others,
forcing a wait for the slowest rank to catch up. In a scaled-
down experiment involving only two ranks per data parallel
group, we measured the launch times for reduce-scatter calls
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and found them to not be consistently staggered but rather fluc-
tuating reciprocally. Furthermore, the size of this time stagger
increased as more steps were executed. Specifically, Rank A
may initially lag behind Rank B but might eventually surpass
Rank B in speed and by a growing margin. Ultimately, all
ranks waited for the slowest rank. To trace back the root cause
of this time skew, we located the variance to occur during
the forward computation stage. Digging deeper into the code,
we attributed this irregularity to fluctuations caused by some
code segments. For instance, irregular garbage collection can
introduce disturbances into the training procedure, and cer-
tain PyTorch operations can lead to performance fluctuations.
These operations are on the critical path but can be affected
along the training procedure. After modifying or removing
those problematic code segments, we no longer observed a
significant decline in MFU, as shown in Figure 12.

Frequent network interface flapping problem. We occa-
sionally encounter training stall or training speed drop prob-
lem due to frequent network interface flapping. When the
network interface flapping phenomena happens, the network
interface goes down at first then goes up again. The interval
between down and up time usually lasts for several seconds.
During the down process, all the packets in transmission will
be dropped. The first lesson we learn is the timeout threshold
should be set explicitly to a larger value , otherwise the default
value will make NCCL timeout very quickly and return a com-
pletion error before the network card up again. The second
lesson we learn is that the root cause of this problem is the
bad link quality between network card, AOC cable and switch.
The flapping frequency can be reduced to a satisfactory level
by doing lower level quality control over network card signal
strength, AOC cable quality and switch side signal strength.

7 Related Work

LLM training. A lot of efforts have been put to the train-
ing of pre-trained LLMs, including proprietary ones such as
GPT-3 [1], GPT-4 [23], GShard [24], PaLM [5], and many oth-
ers [25-29], as well as open-source alternatives like OPT [30],
BLOOM [31], Llama [32], Llama-2 [33]. Existing technical
reports in the field predominantly focus on model perfor-
mance comparisons, leaving out the specific details of the
system infrastructure that makes such training possible. This
paper fills this gap by sharing our experience of end-to-end
LLM pre-training at the scale of over 10,000 GPUs from a
systems perspective.

After pre-training, pre-trained base models can be further
fine-tuned to adapt to downstream tasks better. This has led to
the emergence of a range of dialogue models [34—37] exempli-
fied by ChatGPT. However, it is worth noting that the compu-
tational power and data requirements for fine-tuning are sub-
stantially lower than those for pre-training. With the applica-
tion of optimization techniques such as quantization [38—41]



and low-rank adaptation [42], fine-tuning can be efficiently
accomplished with limited resources.

LLM optimizations. In addition to the techniques mentioned
previously in the paper, there exists a lot of other works tar-
geted at improving the efficiency of LLMs. Sparse or linear
attentions [43—45] are proposed to make the memory con-
sumption scales approximately linearly. Several studies aim
to design new architectures rather than conventional trans-
former architectures to address the efficiency issue, such
as RWKYV [46] and RetNet [47]. Many recent studies have
been devoted to developing communication acceleration tech-
niques for LLMs. Some works reduce communication traffic
using gradient compression [48] or mixed-precision train-
ing [49], while others schedule communication to overlap it
with computation. Many popular ML frameworks, such as
TensorFlow [50] and PyTorch [51], enable overlapping com-
munication with backward propagation by default. Recent
works [52-55] further overlap gradient synchronization with
forward computation via tensor partitioning, at the cost of
extra overhead. Some works [56,57] introduce fixed staleness
to the training pipeline for full overlapping communication
and communication. However, the staleness may degrade the
model performance.

Diagnosis tools in datacenters. Many diagnosis tools have
been developed to identify and pinpoint hardware and soft-
ware problems in datacenters. Pingmesh [58] is an active
probing system based on end hosts. Network wide RTT and
packet loss and measured by sending probing ping packets
and doing data analysis. Network-wide SLAs are provided
and network problems including packet-blackhole and packet
silent drop are detected. EverFlow [59], LossRadar [60], Net-
Bouncer [61] exploits the capability of switches to diagnose
detailed network problems like network path failures or spe-
cific network port failures. NetBouncer leverages IP-in-IP
tunnel techniques to do path probing. EverFlow requires mir-
roring network packets to a centralized server to do debugging.
Hostping [62] is a diagnosis system based on end hosts that
focuses on intra-host bottlenecks. It actively senses complex
GPU server PCIe/NVLINK interconnects and does loopback
bandwidth and latency tests.

Fault tolerance in large-scale distributed systems. Fault
tolerance has been a major concern in large-scale distributed
systems, where a wide range of hardware and software fail-
ures can occur. Many fault tolerance techniques have been
proposed in the past that cater the needs of different systems
and deployment scenarios. Reactive fault tolerance techniques
are used to reduce the impact of failures on a system when
the failures occur. There are many techniques in this category
such as Retry [63], Replication [63], Checkpointing [64] and
Message Logging [65]. These techniques incur some system
overhead to recover from failures. Proactive fault tolerance
techniques keep healthy components in place as backups of
the faulty components, obviating the need of recovery from
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faults and errors, e.g., preemptive migration [66—68] and load
balancing [69]. However, these approaches often assume that
failures are predictable, while it is challenging for real large-
scale distributed systems to predict the failures due to the
complexity of the systems.

8 Conclusion

In this paper, we offer an in-depth look at the design, imple-
mentation and deployment of MegaScale, a production-grade
system built to train LLMs at the scale of over 10,000 GPUs.
MegaScale exploits algorithm-system co-design to optimize
training efficiency. MegaScale achieves 55.2% MFU when
training a 175B LLM model on 12,288 GPUs, a 1.34x im-
provement over Megatron-LM. We emphasize the need for
fault tolerance throughout the training process and imple-
ment a tailored robust training framework to locate and fix
faults automatically. We provide a comprehensive set of mon-
itoring tools for deep observability into system components
and events, facilitating root cause identification for intricate
anomalies. We believe that our work not only offers practical
insights for those working on LLM training, but also paves
the way for future research in this rapidly evolving field.
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