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Abstract—MPI libraries are widely used in applications of
high performance computing. Yet, effective tuning of MPI
colletives on large parallel systems is an outstanding challenge.
This process often follows a trial-and-error approach and
requires expert insights into the subtle interactions between
software and the underlying hardware. This paper presents
an empirical approach to choose and switch MPI commu-
nication algorithms at runtime to optimize the application
performance. We achieve this by first modeling offline, through
microbenchmarks, to find how the runtime parameters with
different message sizes affect the choice of MPI communication
algorithms. We then apply the knowledge to automatically
optimize new unseen MPI programs. We evaluate our approach
by applying it to NPB and HPCC benchmarks on a 384-node
computer cluster of the Tianhe-2 supercomputer. Experimental
results show that our approach achieves, on average, 22.7% (up
to 40.7%) improvement over the default setting.

Keywords-MPI, collective communication; auto-tuning

I. INTRODUCTION

Message Passing Interface (MPI) is a de facto standard

for programming large-scale high-performance computing

(HPC) systems [2]. It provides an extensive set of tuning

parameters to allow programmers to customize the MPI

environment to match the application requirements and the

underlying hardware. While flexible, choosing the optimal

MPI parameter settings is challenging as the number of the

possible options is huge and improper parameters can have

a significantly negative impact on the resulting performance.

Prior studies have shown that the best communication

algorithm for a collective operation highly depends on the

message to be transferred [30, 36, 38]. As there is no

”one-size-fits-all” algorithm, the mainstream MPI imple-

mentations, e.g., MPICH [3], provide a set of tuneable

parameters for configuring how collective operations can

be performed. Because of the large number of runtime

parameter configurations, as well as the differences of ap-

plication features (i.e. number of processes, size of problem

and count of collective functions) and underlying hardware

(i.e. interconnection, communication bandwidth and node in-

frastructure) in various system platform, manually selecting

the “optimal” application-specific configuration involves an

extremely large search space and thus is a challenging job.

A naı̈ve method to obtain the optimal configuration is

to enumerate all the possible configurations and choose

the optimal setting of runtime parameters. However, the

large search space means an exhaustive search is often

prohibitively expensive in practice. As a compromise, re-

searchers manually construct heuristics to find a sub-optimal

solution in a quick manner. However, building a good

heuristic requires intensive expert involvement. This makes

it difficult to keep a timely heuristic updated when the

underlying hardware or MPI implementation has changed.

This paper aims to find a way to automatically construct

MPI optimization heuristics. We do so by first empiri-

cally characterizing the impact of communication algorithms

on the performance of MPI collective operations using

microbenchmarks, through tuning the runtime parameters.

Based on the knowledge extracted from the microbench-

marks, we then develop a model to automatically choose,

from a set of available algorithms available to an operation,

which communication algorithm to use at runtime. Our

key insight is that most real-world applications contain

various MPI collective operations [8], and each of their best-

performing communication algorithms is largely depending

on the message size. If we can find, from microbenchmarks,

the correlation between the message size and the optimal

operation-specific algorithm, we can then apply and transfer

this knowledge to optimize new, unseen MPI programs.

In this paper, we consider eight commonly used MPI

collective operations, or primitives (see Table I), provided

by MPICH, a widely used open source MPI implementation,

and a total of 19 communication algorithms. We use the

OSU MPI benchmark (OMB) suite [4] to characterize MPI

program behaviours. This microbenchmark suite contains all

the collective operations. To understand how the operation-

specific communication algorithms affect the performance,

we use a profiling tool, Integrated Performance Monitoring

(IPM) [1], to capture the size of communicated messages

during program execution time. We then build a mapping

from the message size to the best-performing communication

algorithm. The extracted knowledge can then be applied to

unseen real-world applications. Such an approach requires

little human involvement as the microbechmark profiling and



Figure 1. Choosing communication algorithms by changing runtime
parameters. In this example, by setting the runtime parameters, A and B, we
can change the communication algorithm for an MPI collective operation.

characterization can be automatically performed offline. This

means whenever the hardware or MPI library implemen-

tation has changed, we can simply re-run this process to

update the heuristic. This approach is a new way for building

optimal heuristics for tuning MPI collective operation.

We evaluate our approach by applying it to the NPB and

HPCC parallel benchmark suites on a 384-node cluster of

the Tianhe-2 supercomputer. Experimental results show that

our approach achieves, on average, 22.7% (up to 40.7%)

improvement over the default setting.

This paper makes the following contributions:

• We empirically quantify how the message size and the

choice of communication algorithms affect the perfor-

mance of commonly used MPI collective operations on

a sub-system of the Tianhe-2 supercomputer.

• We propose a novel approach to automatically construct

heuristics to choose the optimal communication algo-

rithm for a given collective, taking into consideration

of the process number and the problem size. And the

approach gives significantly performance improvement

(up to 40.7%) on real-world MPI applications, without

modification to the program source code.

The rest of this paper is organized as follows. Section 2

introduces the background. Section 3 illustrates the exper-

imental setup, which contains the benchmark and platform

instruction. Section 4 shows the performance analysis of our

micro-benchmark results with the best configuration. Section

5 evaluates how we apply our model onto several typical

real-world applications. Section 6 shows related work and

Section 7 concludes the work.

II. BACKGROUND

A. Problem Scope

The MPI standard defines a set of collective commu-

nication operations, each come with a range of algorithm

choices. In this work, we target the MPICH, an open source

implementation of the MPI standard. We consider eight

collective operations offered by MPICH, namely alltoall,

allgather, allreduce, bcast, reduce, gather, reduce scatter

and scatter.

The communication algorithm used for a collective op-

eration is determined by a set of operation-specific runtime

parameters, defined in Table I. Figure 1 gives a concrete ex-

ample on how the change of runtime parameter values affect

the choice of communication algorithms. In this example, we

assume two runtime parameters, A and B, which are used to

determine whether a specific message is short, medium or

long, to switch the corresponding communication algorithm.

In this work, we are interested in choosing the right

parameter settings to help the MPICH runtime to choose

the optimal algorithm for a given collective operation. We do

so by characterizing how the communication message size

and the number of parallel processes affect the choice of

parameter settings. Note that the optimal parameter settings

also depend on the underlying hardware; hence we wish to

find a way to straightforwardly model the relation between

the application features (i.e., message size and process

number) and MPI communication algorithms.

B. MPI Collective Operations

We now describe each of the eight collectives aforemen-

tioned.

MPI Allgather aims to gather data from all tasks and

distribute the combined data to all task. It differs from

MPI Gather in that allgather distributes the data onto all

the involved processes. The conventional implementation of

allgather uses a ring method so that the data from each

process is sent around a virtual process ring. Due to the high

latency of this approach, researchers have developed two

new algorithms for short message, i.e., Recursive doubling

and Bruck [36]. Typically, the former works very well for

power-of-two cases, while Bruck works for other process

configurations. In the following context, we set the power-of-

two numbers of process, and thus we only use the Recursive

doubling approach for short messages.

MPI Alltoall defines that each process sends/receives data

to/from every other process. The conventional alltoall uses

MPI Isends and MPI Irecvs to send and receive data with-

out scheduling communication in each process. As an op-

timization, the Bruck algorithm is applied to the less-than-

8KB messages with at least eight participating processes. For

long messages, the Pairwise Exchange algorithm is used for

power-of-two cases.

MPI Reduce performs a global reduction operation re-

ducing values from all processes to the root process. The

Binomial Tree algorithm does well for short messages,

while for long message, a better algorithm is proposed

by Rabenseifner [31], which implements a long-message

reduce with recursive-halving algorithm followed by a gather

with binomial tree algorithm to the root. In addition,



MPI Allreduce can be implemented in a straightforward

manner by performing a reduce operation followed by a

broadcast. However, for short messages, it uses a recursive

doubling algorithm, similar to MPI Allgather. And in the

Rabenseifner’s algorithm, the gather becomes an allgather

with recursive doubling algorithm for long message.

MPI Reduce scatter reduces and scatters the results

among all processes, instead of storing the data only on

the root process as MPI Reduce does. Note that the scatter

here is a variant (i.e. scatterv), that the number of data

sent to each process is uneven. The conventional algorithm

for reduce scatter is to use a binomial tree. To avoid the

large overhead for lone messages, the Pairwise exchange

algorithm has been introduced. Note that, this communica-

tion algorithm differs depending on whether the reduction

operation is commutative (e.g., MPI SUM, MPI MAX) or

not.

MPI Bcast is a simple case of the one-to-all collectives,

which is implemented based on three communication al-

gorithms selected according to the message size. For short

message, binomial tree algorithm is widely employed. For

long message, the function executes a scatter followed by

an allgather.

C. Runtime Parameters

Like other MPI implementations, MPICH offers two set of

runtime parameters to customize the software environment.

Platform-specific parameters are related to the underlying

architecture of a target platform, which are specifically

designed for functionality rather than performance. They are

used to enable or disable certain features, such as the error

checking, thread level and network module, including the

switching of on/off several MPI functions.

Function-specific parameters are used to select the com-

munication algorithms applied to a specific MPI function.

These algorithms can be selected according to the message

size and the function-specific runtime parameters. In this

work, we focus on tuning these runtime parameters to match

applications and parallel systems.

Recall that our goal is to determine the optimal runtime

parameter values to help the system choose the appro-

priate communication algorithm. We do so by modeling

the correlation between the application features and the

parameter settings in a empirical manner. In the following

section, we will introduce our approach for obtaining the

best configuration of runtime parameter settings according

to the message size and process number.

III. EXPERIMENT SETUP

We now describe the experiment setup, including plat-

forms, MPI runtime parameters, benchmarks and profiling

methodology.

Table I
RUNTIME PARAMETERS AND THEIR DEFAULT VALUES

Runtime Parameters Defaults

MPICH ALLTOALL SHORT MSG SIZE 256
Alltoall

MPICH ALLTOALL MEDIUM MSG SIZE 32K

Allgather
MPICH ALLGATHER SHORT MSG SIZE 80K

MPICH ALLGATHER LONG MSG SIZE 512K

Allreduce MPICH ALLREDUCE SHORT MSG SIZE 2K

Bcast
MPICH BCAST SHORT MSG SIZE 12K

MPICH BCAST LONG MSG SIZE 512K

Reduce MPICH REDUCE SHORT MSG SIZE 2K

Reduce scatter MPICH REDSCAT COMMUTATIVE LONG MSG SIZE 512K

Gather MPICH GATHER INTER SHORT MSG SIZE 2K

Scatter MPICH SCATTER INTER SHORT MSG SIZE 2K

A. System Hardware and Software

We use a sub-system of the Tianhe-2 supercomputer,

which comprises 384 compute nodes with customized in-

terconnection [23, 27]. Each compute node runs a 64-

bit GNU/Linux 2.6.32 kernel, with GCC v4.4.7 of the ”-

O3” compiler option [46] and MPICH v3.1 library, and is

equiped with 64GB memory, two Intel Xeon E5-2692 12-

core processors running at 2.20 GHz, with 32 KB L1 cache,

256 KB L2 cache and 30 MB L3 cache.

B. Configurable Runtime Parameters

MPICH v3.1 has around 70 runtime parameters,

twelve of which are function-specific parameters. Ta-

ble I gives the collective operations and their config-

urable parameters targeted in this work. We note that

MPIR_CVAR_BCAST_MIN_PROCS has little impact on the

communication performance, and thus we do not consider

this runtime parameter in the remaining context.

As depicted in Figure 1, changing the runtime

parameter values can direct the MPI to choose the

communication algorithm to use at runtime. For

example, MPI Alltoall has two runtime parameters,

MPIR_CVAR_ALLTOALL_SHORT_MSG_SIZE and

MPIR_CVAR_ALLTOALL_MEDIUM_MSG_SIZE,

determining what communication algorithms to used

according to the size of transfering message. For the default

cases, when the message size is shorter than 256B, this

collective tends to use the short message algorithm, i.e.,

the Bruck algorithm. When the message size is larger than

32KB with a power-of-two number of processes, it will use

the long message algorithm, i.e., the Pairwise algorithm.

When the message size falls in between the two parameter

values, it will use the medium message algorithm, i.e., the

original irecvs/isends algorithm. Our approach implicitly

switches the communication algorithm by changing the

parameter settings at runtime.

C. Benchmarks

Two sets of benchmarks are applied in our experiment.

We use the OSU MPI Benchmark (OMB) [4], a mi-

crobenchmark suite, to characterize the correlation of the



Table II
BENCHMARKS AND THEIR MPI COMMUNICATION OPERATIONS

Benchmarks MPI Collective Operations

NPB.IS
MPI Alltoallv, MPI Alltoall, MPI Allreduce,

MPI Reduce, MPI Bcast

NPB.FT MPI Alltoall, MPI Barrier

NPB.CG MPI Reduce, MPI Bcast, MPI Barrier

NPB.SP MPI Allreduce, MPI Bcast, MPI Barrier

NPB.BT
MPI Allreduce, MPI Reduce, MPI Bcast,

MPI Barrier
NPB.MG

NPB.EP

HPCC.RandomAccess MPI Alltoall, MPI Allreduce, MPI Reduce,

MPI BcastHPCC.FFT

HPCC.PTRANS

MPI Allreduce, MPI Reduce, MPI Bcast
HPCC.DGEMM

HPCC.STREAM

HPCC.Latency/Bandwidth

HPCC.HPL MPI Allreduce, MPI Bcast

message size, the number of processes and the runtime

parameter settings for the eight operations. We then test

our model on two other benchmark suites, NPB and HPCC,

which are two collections of real-world HPC applications.

Table II lists the MPI collectives used in each NPB and

HPCC benchmark. In NPB, the applications are written in

Fortran except that ’IS’ which is written in C. We note that

only FT, IS, MPIRandomAaccess and MPIFFT contain

the MPI Alltoall. The average of five runs each benchmark

are reported in the following experiment.

D. Profiling Setup

We profile each of the OMB suite with a message size

ranging from 1 B to 1 MB. To characterize the performance

of MPI collectives, we set the threshold value of MPI

runtime parameter to be within 1 B (the minimum) and 1

MB (the maximum). In NPB and HPCC, each benchmark

contains various MPI collectives, and the ratio of the col-

lective running time to the total execution time varies [8],

which means that the effection of collectives to the general

performance is different.

To capture the applications’ features, we use the IPM [1]

profiling tool to obtain the message sizes at runtime. IPM

is a lightweight parallel program analysis instrument, which

provides a low-overhead performance profile of the utiliza-

tion of resource and the performance of a parallel program,

such as the count and latency of MPI collective. And it

has very slight effect on the code execution. At the same

time, by analyzing the application source codes, we can

obtain the message sizes of the program. The size of the

communication message for different MPI collectives in

different programs vaies depending on the problem size

and the process number. Table III gives the communication

message sizes of the four applications (i.e., FT, IS, MPI-

RandomAccess and MPIFFT) for the MPI Alltoall. We find

that the message sizes of FT and MPIFFT change with the

problem size and the process scale, while the message sizes

of IS and MPIRandomAccess look constant.

In addition, MPI Allreduce, MPI Gather, MPI Bcast,

Table III
MESSAGES SIZES OF MPI ALLTOALL IN DIFFERENT APPLICATION

WITH DIFFERENT CONDITIONS(IN BYTES)

App.
no. of

proc.

Msg-size(B) in Diff. Class/Prob-size

A B C D E

FT

16 32K 128K 512K - -

32 16K 64K 256K 1M -

64 8K 32K 128K 512K -

128 4K 16K 64K 256K 1M

256 2K 8K 32K 128K 512K

512 1K 4K 16K 64K 256K

1024 512 2K 8K 32K 128K

IS
16 4 4 4 4 4

1024 4 4 4 4 4

2000 2500 3000 4500 6000

MPI-

FFT

16 64K 128K 256K 512K 1M

32 32K 64K 128K 256K 512K

64 16K 32K 64K 128K 256K

128 8K 16K 32K 64K 128K

256 4K 8K 16K 32K 64K

512 2K 4K 8K 16K 32K

1024 1K 2K 4K 8K 16K

MPI-

R.A.

16 8K 8K 8K 8K 8K

1024 8K 8K 8K 8K 8K

MPI Reduce and other collectives are executed in the ap-

plications, which show the similar feature to MPI Alltoall.

In the following section, we evaluate the best con-

figurations obtained from the microbenchmark, focusing

on the MPI Alltoall, which appears in FT, MPIFFT,

MPIRandomAccess. We do not consider IS, because the

message size is too small to impact general performance.

IV. PERFORMANCE MODELING

In this work, we are particularly interested at under-

standing how the message size and the number of parallel

processes affect the choice of communication algorithms.

We obtain such knowledge through profiling the OMB mi-

crobenchmarks.

A. Impact of Message Size

Our first task for performance modeling is to understand

how each available communication algorithm perform when

the message size and the process number vary. Given that we

have a large range of parameter values, exhaustively trying

all possible parameter value and process number combina-

tions would be prohibitively expensive. Instead, we sample

the parameter space by considering 16 to 1024 processes

and 1B to 1MB for message sizes at a step of power-of-2.

We then use the sample data to fit the performance curve to

compare how different communication algorithms perform

under different message-size and process-number settings.

Specifically we run each of the eight collective operations

with the number of processes in the range of {16, 32, 64,

128, 256, 512, 1024}. For MPI operations that have just

one configurable runtime parameter, we set the parameter

value in a similar manner. As a example, Figure 2 shows

the performance curves for each of the collective when the

number of parallel processes is 1024.



(a) Allgather (b) Allreduce (c) Alltoall

(d) Bcast (e) Redscat (f) Reduce

(g) Gather (h) Scatter

Figure 2. The achieved performance of available communication algorithms with different message sizes using 1024 processes. The x-axis shows the
message size (varies from 1 B to 1MB), and the y-axis shows the measured execution time in the logarithm form.

1) MPI Allgather: As shown in Figure 2(a), the switch-

ing point between Recursive Double and the Ring algorithm

is 337B (the message size). We do not show the performance

of Bruck, which cannot work with a power-of-2 processes in

MPI Allgather. MPICH_ALLGATHER_LONG_MSG_SIZE

decides which communication algorithm to use. By setting

this parameters as 337, the communication performance for

the message sized of 1KB can be improved by 9.4% ,

compared to the default case. When the message size is

larger than 2 KB, the Recursive Double algorithm and the

Ring algorithm shows similar performance.

2) MPI Allreduce: The collective has only one parameter

with two algorithms (Binomial Tree and RabenSeifner) in

the target system. From Figure 2(b), we see that the switch

point occurs when the communicated messsage is of 8 KB.

This value is larger than the default setting, i.e., 2 KB. If we

set the runtime parameter to be 8 KB for MPI Allreduce,

the performance can be improved by around 8.1%, e.g., for

messages sized of 2 KB.

3) MPI Alltoall: From Figure 2(c), when the mes-

sage size ranges from 1 B to 1 MB, we observe

that the irecvs/isends algorithm runs slower than ei-

ther the Bruck algorithm or the Pairwise algorithm for

MPI Alltoall. Therefore, we have to avoid using this

suboptimal choice. This can be achieved by setting

MPICH_ALLTOALL_SHORT_MSG_SIZE to be 4 KB,

while its default value is 256 B. In this way, we can improve

the performance by around 25% for the messages sizing 256

B. When the MPICH_ALLTOALL_MEDIUM_MSG_SIZE

(default values is 32 KB) is set as 4 KB, we can improve the

performance upto 9.5% when the message size is 32 KB.

4) Other MPI collectives: For MPI Bcast (Figure 2(d))

and MPI Reduce scatter (Figure 2(e)), the binomial tree al-

gorithm consistently performs the best in the corresponding



Figure 3. The best configuration under different numbers of processes

communication algorithms. Meanwhile, the long message al-

gorithm delivers a poor performance. In addition, the case of

MPI Gather (Figure 2(g)) is similar to that of MPI Scatter

(Figure 2(h)), which demonstrates similar performance be-

tween short message and long message algorithms.

By quantitatively benchmarking each MPI collective,

we can obtain the performance curves. As can be

seen from Figure 2, different algorithms have a sig-

nificant performance impact on MPI operations, e.g.,

MPI Alltoall, MPI Allgather, and MPI Allreduce. The short

message algorithm of MPI Bcast, MPI Reduce scatter and

MPI Reduce can yeild a better performance than the

other algorithms. Meanwhile, MPI Gather and MPI Scatter

present a very slight performance change among their

communication algorithms. When using a different process

configuration, the MPI collectives will exhibit different

performance. For example, when using 16 processes, the

performance of Reduce scatter changes significantly among

communication algorithms, while the performance of Allre-

duce keeps stable when using less than 128 processes.

B. Best configurations of different functions

By synthesizing the performance curves shown in Fig-

ure 2, given an application with specific process numbers

and message sizes, we can conclude the optimal settings

for runtime parameters corresponding to specific application

features. At the same time, we execute the osu alltoall

programs in the default and best configurations so as to get

the speedup of performance, as shown in Figure 3.

For MPI Alltoall, different settings and their performance

depend on the application features, i.e., the message/prob-

lem size and the number of processes. In Figure 3, the

Alltoall disk represents the osu alltoall application. The

horizontal axis represents the message size, and the vertical

axis denotes the number of processes (both the message

Table IV
THE ACHIEVED KERNEL SPEEDUP WITH THE BEST CONFIGURATIONS

no.of

proc.

Msg

Size(B)

osu

alltoall
FT MPIFFT

MPI

R.A.

64
8K 1.315 1.022 - -

16K 1.063 - 1.091 -

128 16K 1.021 1.044 1.322 -

256
8K 1.183 1.18 1.368 1.09

16K 1.225 - 1.347 -

512

4K 1.452 1.24 - -

8K 1.453 - 1.238 1.1

16K 1.446 1.237 1.255 -

1024

4K 1.756 - 1.407 -

8K 1.701 1.317 1.337 1.13

16K 1.642 - 1.353 -

sizes and process numbers are in the form of power-of-

2). The two entries within the parentheses, labelled as (A,

B), represent the best configurations. The configuration con-

tains two runtime parameters of the MPI Alltoall operation,

and they are MPICH_ALLTOALL_SHORT_MSG_SIZE and

MPICH_ALLTOALL_MEDIUM_MSG_SIZE (both are in the

form of power-of-2). The circle area represents the perfor-

mance speedup when using the best configurations. Note that

our approach works not only for alltoall, but for other MPI

collectives such as MPI Allreduce and MPI Allgather. This

work examines the performance of alltoall communications

because they are among the most wide-spread collectives in

parallel applications.

V. MODEL EVALUATION

In this section, we run the NPB and HPCC to demon-

strate the usefulness of the obtained runtime configurations

from our model. According to the best configurations of

alltoall operation from Figure 3, we set the runtime pa-

rameters before running the FT of NPB, the MPIFFT and

MPIRandomAccess of HPCC, whose message sizes in

different scales are shown in Table III. It is worth noted

that all the kernels are not including all kinds of message

sizes as the osu alltoall does. Figure 4 shows the execution

of the three kernels with best configurations, as well as

the distinction with each other. Table IV shows the detailed

speedup of kernels.

We can conclude from the Figure 4 and Table IV:

• FT. When the number of processes is no more than

64, the performance improvement is not obvious. When

using 64 processes, we note only 2% increase for

CLASS A. But when the number of processes is more

than 64, our approach can significantly improve the

performance. When the message size is 8 KB and

the number of processes is 1024, the parameters are

configured to be (8,13), and the speedup reaches its

largest, which is around 31.7%.

• MPIFFT. When the number of processes is 32, no

performance improvement can be observed, while with

other process configurations, the performance improve-

ment is modest. When the message size is 4KB and



(a) FFT (b) MPIFFT (c) MPIRandomAccess

Figure 4. Diagrams show how the knowledge of microbenchmark profiling can be applied to optimize unseen programs for the Alltoall collective operation.
Given the number of processes (y-axis) and the message size (y-axis), we can quickly find the optimal algorithm from previous profiling information.
Here the larger the circle, the better the performance will be. The black disks show how the resulting performance of a testing benchmark and its runtime
parameter, FT (a), MPIFFT (b), and MPIRandomAccess (c), lies on the profiling space.

the number of processes is 1024, the parameters are

configured to be (8, 12), with an aim to achieve the

largest performance improvement (i.e., 40.7%).

• MPIRandomAccess. When the message size is 8KB

with over 128 processes the performance of the alltoall

operation can be improved significantly. When the

message size is 8KB with 1024 processes, we can

achieve a performance improvement of 13% with the

configuration of (8, 13).

To summarize, we can determine the runtime parameters

by an empirical approach in the case of different scales

for a target application. Such an approach can bring an

improvement in performance. When using less than 64

processes, we consider that the computation, rather than

the communication, takes up the majority of the end-to-end

execution time. Thus, the performance change of commu-

nication time has little effect on the overall time. When

the number of processes becomes larger, the communication

time takes a larger part. Thus, the changes of the alltoall

communications will significantly improve the applications

performance.

VI. RELATED WORK

There is an extensive body of work on performance

optimization of MPI programs. One of the most popular

method is focused on improving the collective communi-

cation and implementations of algorithms on distributed

systems, with the goals of minimizing latency for short

messages and minimizing bandwidth use for long messages.

Researchers have developed many algorithms applied to the

MPI collective operations [5, 12, 20, 21, 31, 36], but the

efforts in optimization of the communication algorithms is

still going on. In [11], Faraj and Yuan input the topology

information to generate topology specific communication

routines, and then select the best implementation among

different topology specific and topology unaware algorithms

with an empirical approach. Godwin et. al. [13] similarly op-

timized the performance of MPI communication by schedul-

ing messages according to topology information. Hasanov

et.al. [17, 18] proposed new approaches taking into account

the hierarchical topology-oblivious transformation of exist-

ing communication algorithms. Li et.al. [22] introduced a

cache-oblivious algorithms allocating the send and receive

buffers on shared heap and use Morton order to guide the

memory copies. Unlike the above approaches to improve

the communication algorithms, our method in this paper

focuses on the selection of a more efficient communication

algorithms according to message sizes and process scales.

Besides the improvement of communication algorithms,

tuning the parameters of the MPI communication library

can be used to a particular system. Mohamad C. et al. [6]

proposed OTPO, a tool that can optimize OpenMPI runtime

parameters, which gives users and system researchers the

possibility to make their environment meet the requirement

of performance. In [28, 29], the main idea is to conduct

an off-line training phase to derive the “best” configurations

of OpenMPI for each target architecture based on machine

learning algorithms. Jha et.al. [19] executed a parameter

set to determine the expected improvement of a collective

operation using Hockney’s model and the LogGP model.

Similar to our approach, the basic idea is to identify the set

of collective operations used by an application and capture

their communication information for tuning parameters.

Our study aims at finding the optimal configuration in

MPICH for a target supercomputer system, based on the

observation of message size and algorithms representation

in applications. Furthermore, our method is more general

and straightforward to select the right communication algo-

rithms, without breaking up any existing algorithms.

Machine learning based predictive modeling has been

employed for a wide range of optimization tasks [42]. These

include code optimization [7, 9, 16, 25, 26, 34, 37, 39, 40,

41, 43, 44, 45, 47], task scheduling [10, 14, 15, 24, 32, 33],

model selection [35], etc. Our work can be integrated in a

learning framework to predict the optimal MPI communica-



tion setting, and we leave this as our future work.

VII. CONCLUSION

This paper has presented a novel approach to tune MPI

collective algorithms. Our approach automatically chooses,

at runtime, which of the available algorithms to use for

a given communication operation. The runtime decision is

based on the message size that is available at program

execution time. To develop the runtime model, we first

profile a set of microbenchmarks to understand how the

collective algorithm affect the communication performance

for each target operation. We then apply the extracted knowl-

edge to new, unseen MPI programs. Our approach reduces

the human involvement in tuning optimization heuristics,

allowing the strategy to be quickly updated in case of

hardware or MPI library changes. We evaluate our approach

by applying it to optimize the communication algorithms

for eight communication primitives provide by MPICH. Our

evaluation platform is a 384-node computing cluster of the

Tianhe-2 supercomputer. We test our approach on the NPB

and HPCC parallel benchmark suites. Experimental results

show that our approach achieves, on average, 22.7%(up to

40.7%) improvement over the default setting.
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